ANCIENT NEAR EASTERN STUDIES

SUPPLEMENT 44

ARCHAEOZOOLOGY OF THE NEAR EAST X
Proceedings of the Tenth International Symposium on the Archaeozoology of South-Western Asia and Adjacent Areas

Edited by
Bea De Cuper, Veerle Linseele and Sheila Hamilton-Dyer

PEETERS
LEUVEN – PARIS – WALPOLE, MA.
2013
CONTENTS

Preface ................................................................. ix
   Bea De CUPERE, Veerle LINSEELE, Sheila HAMILTON-DYER

Faunal remains from Wadi Abu Tulayha: a PPNB outpost in the steppe-desert of
southern Jordan ....................................................... 1
   Hitomi HONGO, Lubna OMAR, Hiroo NASU, Petra KRÖNNECK and Sumio FUJI

Evaluating differences in animal consumption patterns from PPNB houses at Tell
Halula (Euphrates Valley, Syria) ..................................... 27
   Carlos TORNERO, Miquel MOLIST and Maria SÀNA

Changing animal use at Neolithic Çatalhöyük, Turkey .................................. 45
   Nerissa RUSSELL, Katheryn C. TWISS, David C. ORTON and G. Arzu DEMİRERGİ

Herding and settlement identity in the central Anatolian Neolithic: herding deci-
sions and organisation in Çatalhöyük, elucidated through oxygen isotopes and
microwear in sheep teeth ............................................. 69
   Elizabeth HENTON

Chalcolithic pig remains from Çamlıbel Tarlası, Central Anatolia ..................... 101
   László BARTOSIEWICZ, Roz GILLIS, Linus GIRDLAND FLINK, Allowen EVIN,
   Thomas CUCCHI, Rus HOELZEL, Una VIDARSDOTTIR, Keith DOBNEY, Greger
   LARSON and Ulf-Dietrich SCHOOP

Bronze and Iron Age subsistence changes in the Upper Tigris: zooarchaeology of
Operation E at Ziyaret Tepe, south-eastern Turkey .................................. 121
   Tina L. GREENFIELD-JONGSMA and Haskel J. GREENFIELD

New data on the exploitation of animal resources in the Upper Tigris River area
(Turkey) during the second and first millennia BC .................................. 145
   Rémi BERTHON

What is inside this pit? Micro- and macrofaunal investigations at Chalcolithic and
Early Bronze Age Ovçular Tepesi (Nakhchivan, Azerbajian) .......................... 163
   Zsófia E. KOVÁCS, Rémi BERTHON, Wım VAN NEER and Thomas CUCCHI

Royal tombs with horse sacrifices in Nerkin Naver, Armenia (Middle Bronze Age)  173
   Hakob SIMONYAN and Ninna MANASER扬YAN
The mysteries of Egyptian Nile perch (*Lates niloticus*). The case of Tell Tweini (Syria, Middle Bronze Age–Iron Age). ................................. 209  
Veerle LINSEELE, Wim VAN NEER and Joachim BRETSCHNEIDER

Zooarchaeology and social identity in Bronze Age and Iron Age Israel: a research framework. ................................................................. 227  
Nimrod MAROM and Guy BAR-OZ

Persian period dog burials in the Levant: new evidence from Tell el-Burak (Lebanon) and a reconsideration of the phenomenon ................................. 243  
Canan ÇAKIRLAR, Verena AMER, Jens KAMLAH and Hélène SADER

Environmental influence on animal exploitation and meat consumption during the Early Islamic period in Syria. A case study from Qasr al-Hayr al-Sharqi and al-Hadir ......................................................... 265  
Jacqueline STUDER, Denis GENEQUAND and Marie-Odile ROUSSET

A leopard in the Predynastic Elite Cemetery HK6 at Hierakonpolis, Egypt ................................. 283  
Wim VAN NEER, Bea DE CUPERE and Renée FRIEDMAN

A tale of two sites: Old Kingdom subsistence economy and the infrastructure of pyramid construction ................................................................. 307  
Richard W. REDDING

Animal bone assemblages from a Bronze Age palace at Tell el-Dab’a, Egypt ................................. 323  
Günther Karl KUNST

Tomb of the Dogs in Gebel Asyut al-gharbi (Middle Egypt, Late to Ptolemaic/Roman period): preliminary results on the canid remains ............................................. 343  
Chiori KITAGAWA

Pampered puss? Cats from the Roman port of *Myos Hormos* at Quseir, Egypt ................................. 357  
Sheila HAMILTON-DYER

The goats (*Capra hircus* L.) from Kerma (Sudan) (2050–1750 BC) – A contribution to the knowledge of African goats ............................................. 373  
Louis CHAIX

New evidence for dog butchering from prehistoric coastal sites in the Sultanate of Oman ................................................................. 403  
Elena MAINI and Antonio CURCI

List of all contributors ........................................................................ 417
TOMB OF THE DOGS IN GEBEL ASYUT AL-GHARBI (MIDDLE EGYPT, LATE TO PTOLEMAIC/ROMAN PERIOD): PRELIMINARY RESULTS ON THE CANID REMAINS

Chiori Kitagawa

ABSTRACT

This contribution is a preliminary report on the animal remains recovered in 2009 and 2010 during fieldwork in the ancient necropolis of Gebel Asyut al-gharbi on the western outskirts of Asyut, Egypt. The renewed archaeological work, carried out since 2003 by the joint German/Egyptian Asyut Project, re-identified the location and entrance of one of the canid necropoleis; the so-called Tomb of the Dogs. Pottery finds suggest that this tomb was in use mainly from the Late period to the Ptolemaic/Roman periods. The species retrieved from the tomb itself and from its surroundings are briefly described with most attention paid to the canids. These include mainly dogs but a small number of remains from golden jackal and two fox species also occur. In this paper we focus attention on the dogs; in particular their shoulder heights, skull type, age at death, pathologies and possible causes of death.

KEYWORDS

ancient Egypt, Asyut, animal necropolis, animal mummy, canid

INTRODUCTION

Animals in ancient Egyptian religion have been one of the most fascinating phenomena in antiquity as well as presently. In ancient Egypt the animals themselves were not worshipped but they provided the space for the manifestation of transcendent deities. A number of animals were mummified and buried in order to serve the ancient Egyptians’ concept of deity manifestation. Animal necropoleis were one of the characteristics of the Late period onward, especially in the Ptolemaic/Roman periods (c.664 BCE–fourth century CE) (Table 1). One explanation for mummy burials is that they were offerings connected with personal prayers to the god.1

The joint German/Egyptian fieldwork project in Asyut started in 2003 and is a collaboration between three universities.2 The focus of the project3 is the ancient necropolis Gebel

---

1 Ikram 2005, pp. 9–10.
2 The project directors are Ursula Verhoeven-van Elsbergen from the Johannes Gutenberg-Universität Mainz and Jochem Kahl from the Freie Universität Berlin, and one of the field directors is Mahmoud El-Khadragy from Sohag University.
Asyut al-gharbi that rises on the western outskirts of the city of Asyut, which is located 375 km to the south of Cairo (Fig. 1). Earlier fieldwork was conducted in the first half of the 20th century; there is, however, no systematic publication of these activities.

The project in Gebel Asyut al-gharbi provides valuable information on the history of the mountain as well as that of the city. Apart from the numerous tombs honeycombed into the rock and dating from the Old Kingdom to the Roman period, Gebel Asyut had different functions such as a quarry, a destination for school excursions, a dwelling place for Christian anchorites, a place of prayer in the Islamic period and a military base (Fig. 2). One of the other usages of Gebel Asyut was that of animal necropoleis. The written sources tell us that there were different kinds of buried animal species such as ibis, birds of prey, baboons, cattle, cats and canids and that they have different burial grounds in Gebel Asyut.

It is known that the chief deity of Asyut was Wepwawet and the deity for the necropolis was Anubis. Both gods are represented by canid figures. The temple dedicated to Wepwawet was located in the western part of modern Asyut and that of Anubis was close to Gebel Asyut al-gharbi. Both are now buried under the city and under the cultivated land respectively. The presence of these two deities leads us to expect that the majority of animal remains from the gebel could be those from canids. Travelogues from the 18th century onwards report on canid burials and mummies, as well as two large dog tombs in Gebel Asyut, one of which (the so-called Tomb of the Dogs) lies between Tomb I and Tomb IV, the other is located near the Salakhana Tomb. Although there were lots of animal remains scattered on the surface of Gebel Asyut, both of the dog tombs were inaccessible for the renewed research activities because the Tomb of the Dogs was buried under debris caused by heavy rain and the subsequent mudslide in the early 1990's, and the other tomb lies in the area of a military base.

In 2008 a surface survey led to the rediscovery of the aforementioned tomb between Tomb I and IV. Two concentrations of animal remains, especially canid bones, were observed in the surveyed area. About 5300 fragments of mammalian bones were recorded among the faunal materials from the 2008 surface survey. Canid bones were mostly retrieved from the area near the monastery Deir el-Meitin in stage 5. Although the number of retrieved canid remains was less in stage 4 around the (expected) Tomb of the Dogs, a significant number of bones and still-wrapped mummified canid remains were found. In 2009 one of the openings of the tomb was uncovered. A long corridor of about 22 m, running in a north-south direction and with side chambers stretching towards a western direction, was observed inside. The architecture of the galleries may not be the vast subterranean galleries found in Tuna el-Gebel because of other workings already hewn in Gebel that
Animal remains retrieved around the Tomb of the Dogs include those which were recovered during removal of the debris in front of the tomb. The floor surfaces of both the corridor and chambers are filled with animal bones and other artefacts in a disturbed condition.

**MATERIAL AND METHODS**

Full-scale work in the Tomb of the Dogs has not yet started but sampling on the surface at some spots in the tomb was conducted in 2009 and 2010. This paper outlines the preliminary results on the faunal material, mainly the canid remains retrieved in 2009 and 2010 from the Tomb of the Dogs and from its surroundings. More detailed analysis is currently in preparation.

---

---

13 Animal remains retrieved around the Tomb of the Dogs include those which were recovered during removal of the debris in front of the tomb.
The inside of the tomb is in a very disturbed condition, caused by plundering over the years. Animal remains were piled up in disordered layers and consist of bones as well as remains of soft tissue, most of which were partially or entirely covered by a dark brown/black substance (i.e. resin/bitumen). They were sometimes partially wrapped with linen and
string. Apart from animal remains and mummy bandages, which dominate the contents of the tomb, there were wooden coffin fragments, human remains and pottery fragments. The pottery mostly dates from the Late period to the Greco-Roman period, while one pottery fragment dates back to the Middle Kingdom.\(^{14}\) A few of them have the characteristics of pottery for embalming. Beside pottery fragments, a few ostraca with Demotic inscriptions were collected, some of which are seemingly from the Ptolemaic period.

While bandages of animal mummies were mostly ripped apart in the tomb surface, animal bones were generally well preserved. They represent all parts of the skeleton. The faunal materials were sampled within an area of approximately 1 × 1 m on the surface of the chosen locations, two spots in 2009 and 14 spots in 2010, inside the tomb.

The material was identified and recorded on site. Owing to the very similar morphological features and size overlap between dog (*Canis lupus* f. familiaris) and golden jackal (*Canis aureus*),\(^{15}\) it was generally difficult to separate osteological remains of these two species. To distinguish the cranial bones of these two species, the criteria mentioned in Osborn and Helmy\(^ {16}\) were used. As the criteria for distinguishing postcranial bones of dog and golden jackal are not yet well established, most of them were categorised as “dog/jackal”. For the estimation of the age at death, the data from Habermehl\(^ {17}\) for dentition, Silver\(^ {18}\) for dentition and epiphysial fusion and Horard-Herbin\(^ {19}\) for dentition were referred to.

For the measurements, the standards of von den Driesch\(^ {20}\) were applied, while the shoulder height estimations were based on the formulae of Harcourt.\(^ {21}\)

**RESULTS**

Among the collected animal remains from the tomb, canid remains accounted for 93 per cent of the entire number of identified specimens (NISP) (Table 2). The most frequently identified species was domestic dog, followed by two fox species (red fox *Vulpes vulpes* and Rüppell’s fox *V. rueppellii*) and golden jackal. Cat (*Felis* sp.)\(^ {22}\) was the second most frequent group (4 per cent), followed by cattle (*Bos primigenius* f. *taurus*) and sheep (*Ovis orientalis* f. *aries*). Beside mammals, a few remains of mummified birds were found and one shell of the Nile bivalve *Chambardia rubens arcuata* was also present. The dark coloured substance

---

\(^{14}\) T. Rzeuska, personal communication.

\(^{15}\) While the ancient Greek called Asyut Lycopolis (city of wolf) and there have been discussions on *Canis aureus lupaster* subspecies of the golden jackal *Canis aureus* inhabiting Egypt and adjacent countries, as to whether it belongs to jackal or to wolf (cf. Ferguson 1981), the conventional view is to categorise it as a subspecies of *Canis aureus* (cf. Wilson and Reeder 2005, vol. 1, pp. 574–575). Recent genetic studies, however, pointed out that *C. a. lupaster* is not a subspecies of *C. aureus* but a taxon belonging to the grey wolf *Canis lupus* (Rueness et al. 2011). The name of the category “dog/jackal” could be subject to change, but it awaits further studies and discussions.


\(^{17}\) Habermehl 1975, pp. 152–170.

\(^{18}\) Silver 1963, pp. 250–268.

\(^{19}\) Horard-Herbin 2000, pp. 117–119.

\(^{20}\) von den Driesch 1976.

\(^{21}\) Harcourt 1974, p. 154.

\(^{22}\) *F. silvestris* f. *catus* and *F. silvestris*. 
(resin or bitumen) adhered especially to the canid, felid and bird remains. The quantity of the substance varied from material to material; cattle and sheep contained almost none.

Relative frequency of animal remains retrieved from the debris outside the Tomb of the Dogs (data shown in “Around the Tomb of the Dogs”, Tab. 2) showed a similar tendency, which included around 98 per cent canid remains, and the other c. 1.5 per cent consisting of cat, cattle, sheep and unidentifiable mammal remains. The percentage of the canids was slightly higher than that from the Tomb of the Dogs, since more faunal materials of other mammal species, such as cat and cattle, were found inside the tomb. The reason why slightly more percentages of canid bones were found outside is not yet clear. One possible explanation is that canid remains could have been more useful than bones of other taxa as materials for reuse in the gebel, such as for paving materials for tomb floors in later periods, and had been dragged from the tomb.

<table>
<thead>
<tr>
<th>Animal</th>
<th>Tomb of the Dogs</th>
<th>Around the Tomb of the Dogs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NISP</td>
<td>% (NISP)</td>
</tr>
<tr>
<td>Jackal</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Dog</td>
<td>132</td>
<td>Canidae</td>
</tr>
<tr>
<td>Dog/Jackal</td>
<td>1116</td>
<td>93.0%</td>
</tr>
<tr>
<td>Fox</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Fox?</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Cat</td>
<td>55</td>
<td>4.0%</td>
</tr>
<tr>
<td>Cattle</td>
<td>23</td>
<td>1.7%</td>
</tr>
<tr>
<td>Sheep</td>
<td>1</td>
<td>&lt;0.1%</td>
</tr>
<tr>
<td>Unidentifiable mammal</td>
<td>16</td>
<td>1.2%</td>
</tr>
<tr>
<td>Mammal total</td>
<td>1364</td>
<td>174</td>
</tr>
</tbody>
</table>

Table 2. Number of identified specimens (NISP), relative frequency of NISP, and minimum number of individuals (MNI) in and around the Tomb of the Dogs.

Size and body build variation

From the long bone measurements of the dogs (including samples in “dog/jackal”), 203 shoulder heights have been calculated from humerus, radius, femur and tibia and are presented respectively by these skeletal elements in Figure 3. Although the majority of dogs were medium sized, there are considerable size variations, ranging from 27 cm for the smallest individual to 72 cm for the largest. As for small dogs (including brachymel type) with shoulder heights less than 40 cm, seven examples are represented. Six examples represent large and very large dogs above 61 cm shoulder height.

In the early 20th century Gaillard and Daressy23 reported on dogs from Asyut. Shoulder heights calculated from their report and from another six ancient Egyptian sites, namely

---

23 Gaillard and Daressy 1905, pp. 1–8.
Merimde-Benisalâme, Balat, Elephantine, El-Tarif, Tell el-Dab’a and Tuna el-Gebel, are estimated for comparison (Fig. 4). While the sample size is rather small from both (n=8 from Gaillard and Daressy, n=20 from six other sites), no large or small dogs are included in the assemblages. Most of them fall in the medium-sized dog group. Although data is not included in Figure 4 in this paper, the dogs found in Kerma, northern Sudan, from about 2700 to 1500 BCE are uniformly medium size as well.

In iconography it is known that different types of dogs were represented in ancient Egypt. Brachymel dogs were already depicted in the second millennium BCE Middle Kingdom tombs (Fig. 5). On the other hand, osteological remains of such types of dog have not yet been reported, except for a humerus and a femur belonging to a dog 40 cm at the shoulder from the Fifth Dynasty Elephantine. It may be attributed to the fact that dog bones were only sporadically reported; however, there are not that many published long bone measurements of dogs from ancient Egyptian sites. One can also consider that variations of dog type increased in the archaeological context in the Roman territory, as was

---

32 Boessneck 1988, p. 85, Abb. 90b.
Fig. 4. Shoulder height calculations of dogs from Asyut (after Gaillard and Daressy 1905) and other sites in Egypt (references see text).

Fig. 5. Representation of a brachymel dog, 12th Dynasty (Griffith 1900, Pl. IV).
reported by several previous researchers. Since the materials from the Tomb of the Dogs could contain those from the Late to the Roman periods, these dwarf dogs may have belonged to the Roman contexts.

Figure 6 shows the relationship between radius index (mid-shaft diameter/greatest length; SD/GL) and shoulder height for the Asyut canids and dogs from three other sites. Except for one brachydol dog from Asyut, the other specimens form a somewhat loose cluster in the lower right part of the graph, which represents medium-sized dogs of normal build.

The width to length proportion of the palate (width × 100/length) of the Asyut dog/jackal is shown in Figure 7. According to the skull typology, dolichocephalic skull type is under 74.99, mesocephalic between 75.00 and 99.99 and brachycephalic above 100. Based on this grouping, no short skull dog was observed in the sample. All exhibit the dolichocephalic skull type, as do those from Tuna el-Gebel (68.2), Elephantine (60.4) and El-Tarif (64.0).

Fig. 6. Relation between shoulder height and radius index (mid-shaft diameter/greatest length; SD/GL) of dogs from Asyut and other ancient Egyptian sites (references see text).
Age at death, cause of death and pathologies

Age at death varied from new-born to old. Twenty per cent of the sampled canids (including dog/jackal) from the Tomb of the Dogs and 28 per cent from the area around the Tomb of the Dogs belong to the neonatal/infant age group, which corresponds to animals with an age of up to six (/seven) months. All the other specimens had their dentition complete and belonged to the age groups from young to old, meaning that they were over six (/seven) months of age. Although we did not systematically record the wear of the permanent dentition, we noticed that some individuals had heavily worn teeth.

In most cases it was hard to determine the cause of death. In previous studies some authors mentioned dogs killed by strangulation, but no strangulation marks have been recognised in our material thus far. Some individuals may have died of natural causes, perhaps due to insufficient care after birth; others might have been killed intentionally. Comparable examples were reported on mummified newborn/infantile dogs from the faunal assemblages of a 30th Dynasty (fourth century BCE, Late period) tomb in Luxor and the

---

Late period gallery in Tuna el-Gebel.42 The same may have held true for old individuals owing to their age and/or insufficient care.

In relation to old individuals, it must be noted that a number of dog maxillae and mandibulae showed closed or closing alveolus/alveoli after the loss of teeth. In most of the cases more than two teeth, in the worst case several teeth, were lost in a maxilla or a mandibula. Causes of tooth loss could have been varied; however most of them would have belonged to old individuals in consideration of the tooth attrition. Dental abnormalities, such as microdontia and hyperdontia, have also been found in one sample each. Such oral abnormalities are probably to be expected in any large dog bone assemblage.43

Canid remains with pathological features have been recognised on 13 occasions around the Tomb of the Dogs, and on 36 specimens in the Tomb of the Dogs itself, which corresponds to two and three per cent respectively of all retrieved dog and dog/jackal remains. They were mainly 1) oral pathology such as those mentioned above, as well as alveolar or periodontal abscess, 2) bone fracture in long bones as well as ribs, 3) a type of degenerative disease in the spine *Spondylitis deformans* and 4) arthritis. In the dog bone assemblage from the surface survey in 2008, metabolic disease such as rickets/osteomalacia was also observed, however there were no such pathological features among those from 2009 and 2010 that are the subject of this paper. These features could be seemingly related to indirect, if not direct, causes of death.

**Concluding Remarks**

The majority of the osteological remains retrieved from and around the Tomb of the Dogs in 2009 and 2010 were canid, in particular dog. Golden jackal, red fox and Rüppell’s fox were present in small numbers. Most dogs (and dog/jackal) belonged to the medium-sized category. However, small and large individuals were also present in small numbers, which has rarely been attested in osteological remains from ancient Egyptian sites so far. The skull type and body build of the dogs exhibit a high uniformity. The causes of death of the canids could not be clarified from the faunal material. However, dental abnormalities and osteopathological features were observed, some of which might be related directly or indirectly to the causes of death.

Future analysis will also address study questions, such as the mummification technique employed and the animal cult itself. As for the mummification, unlike in Tuna el-Gebel,44 possible chronological change in the techniques has not yet been clarified in Asyut, mainly because most of the materials were not retrieved from the stratified layers. It is hoped that continued work in the tomb will reach better preserved strata.

---

43 E.g. Iron Age and medieval site Eketorp in Sweden (Boessneck and von den Driesch 1979, pp. 147–148).
44 von den Driesch *et al.* 2006.
REFERENCES

BECKER, M.

BOESSNECK, J.

BOESSNECK, J. and VON DEN DRIESCH, A.
1992 Tell el-Dab’a VII. Wien: Österreichische Akademie der Wissenschaften.

BRÜCK, J.

CHAIX, L. and OLIVE, C.

CHAIX, L.

CHARRON, A.

CLARK, K. M.

DURISCH, N.

EDEL, E.
FERGUSON, W. W.

GAILLARD, C. and DARESSY, G.

GRIFFITH, F. L. (ed.)

DE GROSSI MAZZORIN, J. and TAGLIAZZO, A.

HABERMEHL, K.-H.

HARCOURT, R. A.

HORARD-HERBIN, M.-P.

IKRAM, S.

KAHL, J.

KAHL, J., EL-KHADRAGY, M. and VERHOEVEN, U.

KAHL, J., EL-KHADRAGY, M., VERHOEVEN, U., EL-KHATIB, A. and KITAGAWA, C.

KAHL, J., EL-KHADRAGY, M., VERHOEVEN, U., PRELL, S., EICHNER, I. and BECKH, T.


KAHL, J. and KITAGAWA, C.

KESSLER, D.

KLEMM, R. and KLEMM, D.
LIGNEREUX Y., REGODON, S. and PAVIAUX, C.

LORTET, L. and GAILLARD, C.

NUR ED-DIN, A. E. and KESSLER, D.

OSBORN, D. and HELMY, I.
1980 Contemporary Land Mammals of Egypt (including Sinai) (Fieldiana Zoology, New Series No. 5). Chicago: Field Museum of Natural History.

OSBORN, D. J. and OSBORNOVA, J.

PETERS, J.

RUENESS E. K., ASMYHR M. G., SILLERO-ZUBIRI, C., MACDONALD D. W., BEKELE, A., ATICKEM, A. and STENSETH, N. C.
2011 “The cryptic African wolf: Canis aureus lupaster is not a golden jackal and is not endemic to Egypt,” PLoS ONE 6(1): e16385.

SILVER, I. A.

VON DEN DRIESCH, A.

VON DEN DRIESCH, A. and BOESSNECK, J.

VON DEN DRIESCH, A., KESSLER, D., STEINMANN, F., BERTEAUX, V. and PETERS, J.
2006 “Mummified, deified and buried at Hermopolis Magna – The sacred birds from Tuna el-Gebel, Middle Egypt,” Ägypten und Levante 15: 203–244.

WILSON, D. E. and REEDER, D. M. (eds.)